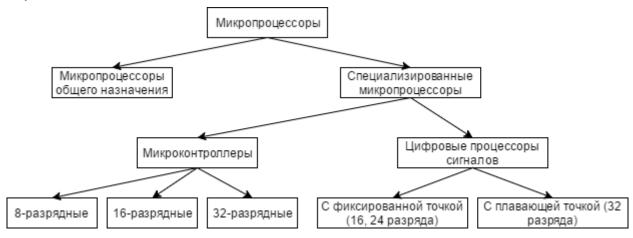
Билет 32. Архитектурные особенности современных микропроцессоров.

1. Основные понятия.

Микропроцессорная техника (МПТ) включает технические и программные средства, используемые для построения различных микропроцессорных систем, устройств и персональных микроЭВМ.

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора и/или микроконтроллера.


Микропроцессорное устройство (МПУ) представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определенного набора функций: получение, обработка, передача, преобразование информации и управление.

Микропроцессором (МП) называется программно-управляемое устройство, осуществляющее процесс цифровой обработки информации и управления им и построенное, как правило, на одной БИС.

Разные МП или МК объединяют в семейства как технология «микроядра», в качестве которого выступает процессорное ядро, взаимодействующее с периферийными устройствами различной номенклатуры, так и принципы, свойственные открытым системам: совместимость (compatibility), масштабируемость (scalability), переносимость (portability) и взаимодействие приложений (introperability).

Выпускаемые микропроцессоры делятся на отдельные классы в соответствии с их архитектурой, структурой и функциональным назначением. Основными направлениями развития микропроцессоров является увеличение их производительности и расширение функциональных возможностей, что достигается как повышением уровня микроэлектронной технологии, используемой для производства микропроцессоров, так и применением новых архитектурных и структурных вариантов их реализации.

На рисунке приведена классификация современных микропроцессоров по функциональному признаку.

Классификация современных микропроцессоров по функциональному признаку

Микропроцессоры общего назначения предназначены для решения широкого круга задач обработки разнообразной информации. Их основной областью использования являются персональные компьютеры, рабочие станции, серверы и другие цифровые системы массового применения.

Специализированные микропроцессоры ориентированы на решение специфичных задач управления различными объектами. Содержат дополнительные микросхемы (интерфейсы), обеспечивающие специализированное применение. Имеют особую конструкцию, повышенную надежность.

Микроконтроллеры являются специализированными микропроцессорами, которые ориентированы на реализацию устройств управления, встраиваемых в разнообразную аппаратуру. Характерной особенностью структуры микроконтроллеров является размещение на одном кристалле с центральным процессором внутренней памяти и большого набора периферийных устройств.

Цифровые процессоры сигналов (ЦПС) представляют класс специализированных микропроцессоров, ориентированных на цифровую обработку поступающих аналоговых сигналов. Специфической особенностью алгоритмов обработки аналоговых сигналов является необходимость последовательного выполнения ряда команд умножения-сложения с накоплением промежуточного результата в регистре-аккумуляторе. Поэтому архитектура ЦПС ориентирована на реализацию быстрого выполнения операций такого рода. Набор команд этих процессоров содержит специальные команды MAC (Multiplication with Accumlation), реализующие эти операции.

Архитектурой процессора называется комплекс его аппаратных и программных средств, предоставляемых пользователю. В это общее понятие входит набор программно-доступных регистров и исполнительных (операционных) устройств, система основных команд и способов адресации, объем и структура адресуемой памяти, виды и способы обработки прерываний.

При описании архитектуры и функционирования процессора обычно используется его представление совокупности программно-доступных виде регистров, образующих регистровую или программную модель. В этих регистрах содержатся обрабатываемые данные (операнды) и управляющая информация. Соответственно, в регистровую модель входит группа регистров общего назначения, служащих хранения ДЛЯ группа служебных регистров, обеспечивающих управление выполнением программы и режимом работы процессора, организацию обращения к памяти (защита памяти, сегментная и страничная организация и др.).

Регистры общего назначения образуют РЗУ - внутреннюю регистровую память процессора. Состав и количество служебных регистров определяется архитектурой микропроцессора. Обычно в их состав входят:

- программный счетчик PC (или CS + IP в архитектуре микропроцессоров Intel);
- регистр состояния SR (или EFLAGS);
- регистры управления режимом работы процессора CR (Control Register);
- регистры, реализующие сегментную и страничную организацию памяти;
- регистры, обеспечивающие отладку программ и тестирование процессора.

Кроме того, различные модели микропроцессоров содержат ряд других специализированных регистров.

Состав устройств и блоков, входящих в структуру микропроцессора, и реализуемые механизмы их взаимодействия определяются функциональным назначением и областью применения микропроцессора.

Архитектура и структура микропроцессора тесно взаимосвязаны. Реализация тех или иных архитектурных особенностей требует введения в структуру микропроцессора необходимых аппаратных средств (устройств и блоков) и обеспечения соответствующих механизмов их совместного функционирования. В современных микропроцессорах реализуются следующие варианты архитектур.

CISC (Complex Instruction Set Computer) - архитектура реализована во многих типах микропроцессоров, выполняющих большой набор разноформатных команд с использованием многочисленных способов адресации. Они выполняют более 200 команд разной степени сложности, которые имеют размер от 1 до 15 байт и обеспечивают более 10 различных способов адресации. Такое большое многообразие выполняемых команд и способов адресации позволяет программисту реализовать наиболее эффективные алгоритмы решения различных задач.

RISC (Reduced Instruction Set Computer) - архитектура отличается использованием ограниченного набора команд фиксированного формата. Современные RISC-процессоры обычно реализуют около 100 команд, имеющих фиксированный формат длиной 4 байта. Также значительно

сокращается число используемых способов адресации. Обычно в RISC-процессорах все команды обработки данных выполняются только с регистровой или непосредственной адресацией.

VLIW (Very Large Instruction Word) - архитектура появилась относительно недавно - в 1990-х годах. Ее особенностью является использование очень длинных команд (до 128 бит и более), отдельные поля которых содержат коды, обеспечивающие выполнение различных операций. Таким образом, одна команда вызывает выполнение сразу нескольких операций параллельно в различных операционных устройствах, входящих в структуру микропроцессора.

Кроме набора выполняемых команд и способов адресации важной архитектурной особенностью микропроцессоров является используемый вариант реализации памяти и организация выборки команд и данных. По этим признакам различаются процессоры с Принстонской и Гарвардской архитектурой.

Принстонская архитектура, которая часто называется архитектурой Фон-Неймана, характеризуется использованием общей оперативной памяти для хранения программ, данных, а также для организации стека. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные. Эта архитектура имеет ряд важных достоинств. Наличие общей памяти позволяет оперативно перераспределять ее объем для хранения отдельных массивов команд, данных и реализации стека в зависимости от решаемых задач.

Гарвардская архитектура характеризуется физическим разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек для хранения содержимого программного счетчика, который обеспечивал возможности выполнения вложенных подпрограмм. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Благодаря такому разделению потоков команд и данных и совмещению операций их выборки реализуется более высокая производительность, чем при использовании Принстонской архитектуры.

2. Архитектурные особенности

Рассматриваются на основе изучения семейства МП Intel x86.

Архитектурная	Описание	Где впервые
особенность		появилась
Многозадачность	Возможность работы в одном из двух режимов: реальном	Intel 80286
	(real) и защищенном (protected). В реальном режиме	
	возможно выполнение только одной программы. Адресация	
	оперативной памяти без специальных драйверов	
	ограничивается 1Мб. В защищенном (protected) режиме	
	обеспечивается выполнение сразу нескольких программ за	
	счет переключения между задачами («переключение	
	контекста процессора»). Адресация основной памяти	
	расширена до 4 ГБ (в последних МП – до 100 ГБ).	
Поддержка системы	Дальнейшее развитие принципа многозадачности,	Intel 80386
виртуальных машин	возможность моделирования в одном МП работу нескольких	
	компьютеров, управляемых разными ОС.	
Конвейерная	Одновременное выполнение разных тактов	Intel 80286
обработка команд	последовательных команд в разных частях МП с	
	непосредственной передачей результатов выполнения из	
	одной части МП в другую. Позволяло достигнуть	
	пятикратного увеличения производительности МП.	
Кэширование	Использование высокоскоростного буфера для обмена	Intel i386SLC,
данных	данными между микропроцессорной памятью (регистрами	Intel i486
	МП) и основной памятью ЭВМ. В кэш-память заранее	Многоуровнево
	копируются те участки памяти, с которыми собирается	е кэширование

Суперскалярная архитектура Суперскалярная архитектура с поддержкой внеочередного исполнения команд («динамическое исполнение»)	работать МП. Управление процессом кэширования осуществляется кэш-контроллером и производится параллельно с работой центрального процессора. Современные ЭВМ имеют иерархически организованную кэш-память (до 3 уровней). Наличие в микропроцессоре более 1 конвейера для выполнения команд (параллелизм на уровне инструкций). Наличие в микропроцессоре более 1 конвейера для выполнения команд, а также специальных схем, позволяющих изменить изначальную последовательность выполнения команд (не нарушая смысла алгоритма) с целью параллельной загрузки всех конвейеров.	- Intel Pentium II Intel Pentium Intel Pentium Pro
Гарвардская архитектура процессора Расширенный набор инструкций	В кэш-памяти 1 уровня предусмотрено разделение команд и данных, которые хранятся отдельно друг от друга для повышения эффективности обработки. Новые команды, расширяющие базовый набор инструкций МП, для работы с мультимедийной информацией и одновременной однотипной обработки множественных данных.	Intel Pentium Pro Intel Pentium MMX, Intel Pentium III, Intel Pentium IV, Семейство Intel Core, Intel Core 2
Гибридизация RISC и CISC архитектуры	Преобразование стандартных х86-инструкций в RISC-подобные команды фиксированной длины. Еще не выполненные команды записываются в кэш инструкций в том порядке, в котором они будут подаваться на исполняющие устройства (конвейеры) МП. В кэш-памяти может храниться до 12000 микрокоманд. Перевод инструкций формата х86 в микрокоманды ядра процессора происходит асинхронно с работой основных исполняющих устройств.	Intel Pentium IV
Технология одновременной многопоточности	Эмуляция двух логических исполняющих устройств на одном физическом с целью более эффективно исполнять параллельно запущенные потоки команд (параллелизм на уровне потоков).	Intel Pentium IV Hyper- Threading
Многоядерные процессоры	Объединение двух или более исполняющих устройств на одной ИС, действующих как единое устройство. Обычно имеют общий кэш и интерфейсную систему для связи с другими устройствами ЭВМ.	Процессоры семейства Intel Core (Intel Core Duo, Intel Core 2 Duo, Pentium Dual Core, Intel core 2 Quad и др.)
Технология автоматического увеличения тактовой частоты процессора	Для обеспечения дополнительной производительности и при условии соблюдения ограничений по мощности, температуре и току, процессор может автоматически «разгоняться», то есть увеличивать рабочую тактовую частоту всех своих ядер.	Процессоры Core i5, i7